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An approximate solution is given for the heat-conduction equation for
the temperature field under conditions of monotonic heating. The solu-
tion is obtained by linearization according to the small parameter
method.

An examination was made in [1] of the special fea~
tures of temperature regulation in a monotonically
heated (or cooled) plate with a symmetrical tempera~
ture field. The analysis used a linear approximation
to the thermophysical parameters and the heating rate
as a function of temperature within the temperature
field of the plate. A generalization of the relations
found in [1] for the case of an unsymmetrical tempera-
ture field of the plate may be found by similar means.

The problem is formulated as follows. An infinite
plate is heated monotonically by a uniform heat flux
normal fo its edges} There are no internal heat
sources. The thermophysical parameters A and a are
monotonic functions of temperature, and the heating
rate b (%, 7) is nearly constant. The temperature drop
inside the plate does not exceed several tens of de--
grees, and the temperature field obeys an equation of
the form
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Equation (1) is nonlinear. However, in solving it in
accordance with the objective described, it is impor-
tant to establish limits within which the temperature
field of the plate obeys, with satisfactory accuracy,
the relations of the regular regime of the second kind.
In other words, it is important to find the conditions
for which the solution of (1) agrees, to an assigned
accuracy, with the solution of the equation
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in which the thermophysical parameters and the heat-
ing rate are assumed to be constant,

The solution of (2) is generally known to be
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Taking the foregoing into account, an approximate
solution of (1) is feasible, using linearization accord-
ing to the "small parameter" method [2]. v
As the small parameter we shall choose the drop
in temperature 4 (x, 7) in the plate, and we shall re-
present A (t), a (t) and b(x, 7) as functiong of the form

b= g (1 B ®), @ = a, (14, 8), b=>b,(1+k,8), (4)

where the coefficients k), k, and kj, refer to t;, and
at any instant of time 7 are considered to be indepen-
dent of x and 4 (x, 7).

Substitution of (4) into (1) allows us to write the
latter in the form
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Equation (5) may be transposed to a form more con-
venient for mathematical analysis by introducing the
limits

B % <01, kg ® < 0.1, ky®.20.1. ®)

The limits are justified on two considerations.
Firstly, if the parameters A, a, and b may be repre-
sented in the neighborhood of t; by absolutely conver-
gent power series in 4, then the smaller the com-
plexes k)¢, k,¢ and kpd are, the more valid are the
relations in (4). Secondly, the greatest interest in
practice, especially in making thermophysical meas-
urements, attaches precisely to heating with small
internal temperature drops.

Taking the inequalities (6) into account, Eq. (5) may
be replaced, with an error of not more than 1%, by
another equation:
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The complex k;y (a;/by) (d4 /dx)* appearing in (7), as
will be shown below, is commensurate with the com-
plex k)¢, and therefore, in conformity with (6), we
have

Do = (ky— k)& —Fy 2

—) < 0.2, (8)
o
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The inequality (8) in turn enables us to state that
the parameter Ac in (7) is a correction, and introduces
a negligible disturbing influence in comparison with an
equation of the type of (2)
&9 by 9)
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Because of this we may further éimplify and lin-
earize (7) by finding an approximate correction Ac
from the solution of (9)

Ll (10)
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which may be considered as a solution of (7) in the
first approximation.
From the solution of (10) we have

(40 -
dx 21

After substituting the expressions for ¢° and (ds°/
/dx)® in (7), we arrive at the equation
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which is a sufficiently good approximation to (7), and
has an exact solution.

Integration of (12) leads to the desn‘ed function for
the temperature field of the thin plate;
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Function 4 from (13) differs from function 4 found.
in the first approximation from (11) by the correction

1 b,
A% = -~ (2k k, k) -
1 3( v+ kg b)2 X

a (14)
4 2
and may be further abbreviated to the form
CB(x, 1) =8%(x, 1)+ AB(x, 7). (15)

The correction Ad determines the disturbing in-
fluence of the parameters kj, k, and ky, on the nature
of the temperature field in the thin plate, and may be
used to evaluate the conditions of temperature regu-
lation under conditions of monotonic heating (or cool-
ing). In fact, if the inequality

A% < 0,019° (16)
is satisfied, then the temperature field in the plate
obeys the relations of the regular regime of the sec-

-ond kind [3, 4] with an error not exceeding 1%. The
inequality (16) may otherwise be used to establish the
limits of applicability of the relations of the regular
regime of the second kind under monotonic heating
conditions. As the relative value of Ad in function (15)
increases, the accuracy of the solution naturally falls.
The temperature field of the plate may be calculated
with the aid of function (13), if the correction AY does
not exceed (0.1-0,2)8°,
Function (13) describes a steady quasi-regular heat-
ing (or cooling) regime for the plate. To find the dura-
tion of the initial, irregular phase of the test we may,
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in the first approximation, recommend the use of ex-
perimental results relating to heating a plate by a con-
stant heat flux [4].

- In practice we usually require to know function (13)
in conducting thermophysical investigations under

. monotonic heating conditions, especially in studying

the temperature dependence a(t) of materials. The
equation for calculating a(t) may be found from function
(13), if the temperature drops ¢; and 4 .; are mea-
sured directly in the experiment. In fact, a combina-
tion of values of 4 and 4_; found from (13) leads to
quite a convenient equation for practical purposes:

bl (1 ey, )
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ny = L gy =0
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n % (2, + oy — Eol®, +8_y).

According to the limits assumed above, function
Ao, must play the part of a correction in (17). For
practical purposes its value in (18) may be found from
the approximate relation

O + 8 = byl¥a,. (19)

In experiments to determine «(t) in order to calcu-
late the correction Ao, in addition to experimentally
determined values of 47, 4.7, and kp,, we require to
know tentative values of the parameters k) and k,.
The parameter kg, in particular, may be found from
an approximate calculation of a(t) with the aid of (19).
To calculate k;, independent measurements are un-
fortunately necessary.

Calculation of the thermal diffusivity is appreciably
simplified, naturally, if the optimum test conditions
are chosen for which the correction Ac, turns out to
be negligibly small. It is clear from the composition
of the correction Aoy, that to secure optimum test
conditions, we should achieve as symmetrical heating
conditions for the plate as possible, with quite small
values of 47 and 4..;. In this way, expression (18) may
be used ag an initial condition in the choice of the
optimum construction of the calorimeter equipment
[5] intended for measuring a(t).

As a second example of application of relation (13)
found above for 4(x, 7), we take the experimental
measurement of A{t) of materials under conditions of
monotonic heating of a thin plate from one side [5].

The methods of this series amount in themselves
to measuring the heat flux and true temperature gra-
dient in the so-called "basic" layer of the plate, in
which the true temperature gradient coincides with the
mean gradient measured from the temperature drop
at the outside edges of the plate. In the special case
when the temperature field of the plate obeys relation
(10) with sufficient accuracy, the basic layer coin- .
cides with the central layer (x = 0). In the general
case, however, there is a displacement of the basic
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layer from the center to some value x,. Differentia-
tion of function (13) leads to the equation
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Analysis shows that in the majority of practical
problems Eq. (20) admits of a simplified solution,
since its first term, containing x§ and x}, is most of-
ten very small compared to the other two terms. This
conclusion is based on the simplifying inequalities
(6) and (16) chosen in solving the problem, an account
of which the displacement x; does not usually exceed
the value

x, < 0.1, 1)

The approximate equation giving the displacement
of the basic layer, if (21) is used, takes the form

__ (1/6)(2Rky + kg — kp) (B 4 B )(Br—0/20) . (22)
(B + )/ — By, (B, /21
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In the more special case, when the inequality

Yoz \* B 8y
By | Yot | Bt
A( 21 ) N (23)

is satisfied, the expression for x; is /additionally sim-
plified:

Ky = — (1/12) (2y + by — k) 18y, (24)
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The temperature of the basic layer, to which the
measured thermal conductivity in the problem exam-
ined must relate, can be evaluated approximately by
the expression derived from (13)

Vit 4 Do 25)

H(x,, T)= ol %%
¢

10, 1)

NOTATION

t =t(x, 7)) temperature of plate; 2I) thickness of plate; 1) time;
X) variable coordinate reckoned from the central layer; b = dt/dr,
A= A(t), a =a (1)) thermal conductivity and diffusivity of plate at t;
$=t(x, T)~ (0, ) 9= O(LT) By = B (LT By = 8 —
— 8. Ag= M (ty), ag=a (tg) and by = b (1) where 1,=1(0, <)
ky = Lok . ko= L day . hky= 1Ay ) relative temperature
N kg dt a, dt by dt
coefficients of A, a, and b at t,.
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